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• Goal: Particle-based sampling without added noise 

 

• Approximate version of the Jordan-Kinderlehrer-Otto scheme 

 

 

• Key: Implicit computation of the Wasserstein proximal using backwards 

Euler scheme 

• Computational machinery: computable approximation of the Wasserstein 

proximal, Monte Carlo integration, clever ODE discretization 

2. Approximating the Proximal 
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3. Convergence 

Theorem. Applied to the    -dimensional Ornstein-Uhlenbeck process 

with condition number   , the worst-case (TV)-mixing time is  

                                                                                 . 

Moreover, the covariance has a closed form, and the inverse covariance 

matrix converges linearly to the (biased) stationary distribution. 

Comparisons: 

MALA: 

ULA: 

Better dependence on problem dimension    ! 

(Implicitly hidden in the Monte-Carlo step) 

2D bi-modal double banana distribution 
Interesting structure! 

iteration 

Stationary Solution 
Fokker-Planck Equation 

 

Free energy functional 

Increasing regularization 

2D Gaussian 

2D Gaussian mixture 

10D Gaussian 
Variance reduction from 

regularization 

Regularization allows for larger step-size 
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Motivated by  
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Equation 

Solving for one  

time step: 

Remove dependence  

on dual variable Φ 

Compute regularized  

proximal with kernel formula 

Evolve particles 
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Proposed Method: 
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Key Approximations 
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Approximating the potential in the FP-SDE with 

the Kantorovich dual variable 

Discrete time approximation of ODE 

Monte-Carlo computation in kernel formula 

Empirical distribution approximation 

Coming soon for more general 

(For quadratic     .) 


