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e Sample from the target distribution p over R? (for bounded C' potential V)

p(x) ~ exp(=V(z))

e Applications: global optimization, Bayesian neural networks, generative modelling
etch

e V is known, but sampling is difficult (normalizing constant, high dimensionality...)
e Common method: Markov Chain Monte-Carlo (MCMC)
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Fokker-Planck Equation

The Fokker-Planck equation is a PDE evolution in the density space.

g[t) =V - (pVV) + BAp, p(z,0) = po(z). (Fokker-Planck)

Steady state:
Poo(T) ~ exp(—ﬁ_lY/(x)).
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Classical SDE-based formulation

dX(t) = =VV(X(t))dt + \/28dW (t) (1)
Need to solve SDE using some discretization.

1. Forward Euler-Maruyama discretization — Unadjusted Langevin Algorithm?

X1 = Xy —nVV(Xy) + /2802 (ULA)
2. Adding a correction step — Metropolis-adjusted Langevin Algorithm (MALA)

Ergodicity from noise. Convergence from ergodic theory: evolution defines an
ergodic Markov chain, which converges to the invariant distribution.

' Zy ~ N(0,1) i.i.d. normal
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Fokker-Planck Equation

The Fokker-Planck equation is a PDE evolution in the density space.
dp
Fr

Steady state:

V- (pVV) + BAp, p(x,0) = po(x). (Fokker-Planck)

poo(z) ~ exp(—B7 1V (z)).
Equivalent particle-based evolutions for ¢ € [0, +00):

1. SDE
dX (t) = —=VV(X(t))dt + /28dW (¢)

2. Score-based ODE (where X (t) ~ p(t,-) is the density at time t)
dX

—r = ~VV(X) = 8V logp(t, X)
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Score-based ODE formulation

dX
—5 = ~VV(X) = fViogp(t, X)

e Difficulty: what is p(t,-)?

e Kernel density estimation: using samples to approximate p(t, X)
e Caveats: mode collapse, choice of kernel, hyperparameter choices

e Directly learning the score using neural networks

e Empirically works in high dimensions, see diffusion models e.g. DALL-E
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Score-based ODE formulation

dX
—5 = ~VV(X) = fViogp(t, X)

Difficulty: what is p(t,-)?

Kernel density estimation: using samples to approximate p(t, X)

e Caveats: mode collapse, choice of kernel, hyperparameter choices

Directly learning the score using neural networks

e Empirically works in high dimensions, see diffusion models e.g. DALL-E

Our proposed method: natural “choice of kernel” based on the Wasserstein
proximal (among other things).
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Wasserstein Proximal

Definition
Let po be a probability density function with finite second moment, and V' € C!'(R?)
be a bounded potential function. For a scalar T" > 0, the Wasserstein proximal of py is

defined as

Wi(po, q)?
pr = WProxry (po) == arg min/ V(z)q(x) dx + Wieo,a)” ; (2)
qEPz(Rd) Ra 2T

where W(po, q) is the Wasserstein-2 distance between pg and ¢, and P; is the set of
probability density functions ¢ with finite second moment.
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Inspiration: JKO? scheme

The iterations

| W(pr, q)?
PT41 = arg mm/ V(z)q(z) + Bqlogq dx + (p;lQ) (3)
q€P2(R) JRE

converge (weakly) to the solution of the Fokker-Planck equation as h — 0.

Similar to a proximal descent method in variational analysis.

2 Jordan, Kinderlehler, Otto. The variational formulation of the Fokker—Planck equation. SIMA 1998.
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Regularized Wasserstein Proximals

Benamou-Brenier PDE formulation of the Wasserstein proximal:

Buplt,2) + Vi - (plt, 2) V2 0(t,2) = 0 (42)
0,B(t, ) + %HVJ;(I)(t,a:)Hz —0 (4b)
p(O,a;) = PO($>7 CI)(T7 CL) = _V(*L) (4C)

®: Kantorovich dual variable.
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Regularized Wasserstein Proximals

Benamou-Brenier PDE formulation of the regularized Wasserstein proximal:

Op(t,x) + Vg - (p(t,z)V,0(t,x)) = BAzp(t, x) (4a)
8.8(1,7) + 5 |Va (1, 2)|[* = 6, 2(1, ) (4b)
p(O,l’) - p0($), CI)(T’ 'E) = —V(.Q}) (4C)

®: Kantorovich dual variable.

Later: regularized Wasserstein proximal p(T,x) has a closed form, as opposed to the
(non-regularized) Wasserstein proximal.
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Proposed Method

3 step approximation:

1. Approximate Fokker-Planck equation with regularized Fokker-Planck equation

e One-step time approximation using Wasserstein proximal
2. Backwards Euler time-discretization of ODE

3. Per-step approximation of density using empirical measure
This allows us to use the deterministic computation methods:

1. Deterministic computation of score using kernel formulation

2. Convolution as Monte-Carlo sampling
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Magic Ingredient 1: Backwards Discretization

Standard score-based ODE:

dx
— = ~VV(X) = BV logp(t, X).

Regularized score-based ODE (Liouville's equation):
dX

Backwards (one-step) discretization (where ® and pj, 7 use initial condition X}, ~ py):

Xpy1 = Xp +nVO(T, Xi) — BV log pi (T, Xy).
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Magic Ingredient 1: Backwards Discretization

Standard score-based ODE:

dX

r —VV(X) - BViogp(t, X).
Regularized score-based ODE (Liouville's equation):

dX

s Vo(t, X)— pViogp(t, X).

Backwards (one-step) discretization (where ® and pj, 7 use initial condition X}, ~ py):
X1 = X + V(T Xi) — nBV log pi (T, Xi).
Magic step: ®(T',x) = —V (z) by definition

Xi+1 = X —nVV(Xy) — 0BV log pr 7(Xk).
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Magic Ingredient 2: Kernel Formulation®

The regularized Wasserstein proximal can be written as a convolution.

pria) = [ Klam)m() du ©)

Sw. Li, S. Liu, S. Osher. "A kernel formula for regularized Wasserstein proximal operators.” Research in the
Mathematical Sciences 10.4 (2023): 43.
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Magic Ingredient 2: Kernel Formulation

The convolution is (relatively) easy to compute for empirical distributions

L
po(z) = N Z Oz, (7)
i=1
exp [—& (V(x;) + Ixizxal®
. }VZN:K(XZ-,Xj) :% Y, exp |~ (V;(X); o7 )} (8)
j=1 Jj=1
Z(Xj) = EZNN(Xj,ZTﬁ) [exp (_‘;(;))] . (9)
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Magic Ingredient 3: Empirical Approximations

e At each step, we have some samples. This defines an empirical measure (hopefully
approximating the true measure)

e The regularized Wasserstein proximal applied to an empirical distribution has a
simple closed form

e This allows us to compute a closed-form solution
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Full algorithm

Backwards Regularized Wasserstein Proximal (BRWP) Algorithm

1. Approximate current measure using empirical measure:

1 N
Pk0 = N 25("@“1@,@‘)
=]

2. Compute score V log py 1(zy, ;) of regularized Wasserstein proximal of py, o

e Utilise the kernel formulation
e Three Monte Carlo integrals here: normalizing constant, p and Vp

3. Evolve the particles according to backwards Euler-discretized regularized
Fokker-Planck equation

Tht1,j = Tk — NVV(rr;) —nBViog ppr(xkj), j=1,...,N.
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Algorithm

Algorithm 1 Backwards regularized Wasserstein proximal (BRWP) scheme

Input: Potential V', samples (x(“);\;l ~ yg"“v, step-size 7 > 0, regularization
parameters T, 8 > 0, Monte Carlo sample count P
Output: Sequence of samples (x ;)Y for k = 1,2, ...

1: for k € N do
2: fori=1,..,N do ° BaSica”y 3 Monte
3: Sample (ki p)b_y ~ N (xk.i,28T1) )
. EANEED o S (,%) Carlo integrals
5: end for . . .
6: fori,j=1,...,N do > Compute pre-requisites for score ° Quadratlc Scallng n
Eri — L (V(xpy) + il
’ kg = oxp [~ (Vo) + Bl number of samples(!)
& Viig = =35 (TV (kks) + ZigRa )
; end for
10: fori=1,..,N do
11: Vlog pr,1(Xk,i) = (30 Viiii€hii/ Zrj) [ (3 Eniii/ Zr,5) > Compute score
12: Xit1,i = Xki — NVV (Xk,i) — 18V log pr1(Xk.:) > Perform the update
13: end for
14: end for
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Gaussian analysis

1D Ornstein-Uhlenbeck process (V = az?/2)
dX = —aXdt + /28dW.
True stationary distribution of Fokker-Planck equation: N (0, 5/a).

ULA MALA BRWP
N0, g22z) N(0,8/a)  N(0,5(1 - a’T?))

(2—an)a b a

Table 1: Stationary distribution of each MC

BRWP decreases variance (as opposed to ULA which increases variance)
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Sampling Behavior (Gaussian)

T 0.05 0.25 0.5 0.999

Variance reduction phenomenon for 5-dimensional Gaussian with condition number x = 10.
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For Ornstein-Uhlenbeck process V (z) = —% T¥~12. Mixing time for a Gaussian with

minimum eigenvalue L~!, maximum eigenvalue m™~

Mixing time = time for distribution to be distance § away from true distribution in

total variation.

1

, centred at z*. kK = L/m.

Method Initialization Mixing time
ULA N(z*, m=11) O ((drlog(dr/0)
% T— (d3+dlog?(1/5)
ULA N(z*, L711) O (L)
MALA N(a*, L) O (d?klog (%))
BRWP | N(z*,L~Y(1 - L~2T%)~'I) ©O (/{3/2 10g(/m/ﬁ/5)>

Better dimension dependence(?)
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Sampling Behavior (Gaussian mixture)

Iter ULA MALA BRWP

50

500

Evolution of particles under ULA, MALA and BRWP for the bimodal distribution, with

step-size = 0.01. The parameter of T" was taken to be 7" = 0.01 for BRWP. 2027



Sampling Behavior (Double Banana)

lter ULA MALA BRWP
10 5

.
100

Evolution of particles under ULA, MALA and BRWP for the bimodal distribution, with

step-size = 0.01. The parameter of T" was taken to be 7" = 0.01 for BRWP. 2127



Large Step-Size Regime

Iter ULA MALA BRWP (T"=0.1) BRWP (T'=10.2)
0 ’ :
100 Diverged

Convergent behavior reappears for large step-sizes when regularization parameter is large
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Summary

Liouville’s

Fokker-Planck u ........ Score-based
e We propose a novel deterministic sampling method

based on the regularized Wasserstein proximal @

X a0, X) - Tkt X

e Fully characterized stationary distribution, <~
- -based ODE
/

convergence behavior, and asymptotic bias for

quadratic potentials

e Outstanding: asymptotic theory? General

e )
e v

{ Remove dependence

i |

Compute regularized J
a

convergence rates? Approximation errors?

on dual variable ® L‘)mximal with kernel formul:

B 2)9,000,) = B30,

arXiv:2308.14945
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Definition of Wasserstein-2 Distance

Definition
For two probability density functions 1,7 on R with finite second moment, the
Wasserstein-2 distance between p and 7 is

1/2
W(u,n):( w [ ro:—y||%<x,y>dxdy> ,
YEL (1,m) J JRA xR

where the norm is the Euclidean norm, and the infimum is taken over all couplings
between 1,7, i.e. 7 is a joint probability measure on R¢ x R? with

/ Y(z,y) dy = p(z), / v(z,y) dz = n(y).
R4 Rd
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Gaussian: closed-form recurrence

Proposition
X1 is Gaussian with mean 1 and covariance ¥y given by

Sl = @BTU+TE N + I+ T Y I5,(T+ T2 ) ™) 7, (10a)

perr = (I =2 e + BSLy) (e — k1)
_ <I — S 4B (28T + (I + T2~ H™) ™ (Tz—l)) we,  (10b)

Sk = (I =S '+ 0B SR — T+ 082 ) T (10¢)
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Bayesian Logistic Regression

(a) ULA (b) MALA () BRWP T'=0.025  (d) BRWP T =0.1

Figure 1: Plots of the samples of 6 after 4000 iterations, with N = 1000 samples. Parameters
are a = 0.5, = 0.05. For this particular instantiation, we find that 6* ~ (1.16,1.45). We
observe that for small T, we have a teardrop shaped structure. For large T', we have mode

collapse in one direction.
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Bayesian Neural Network

Dataset BRWP AlG WGF SVGD
Boston  3.3094531e-1 2.8714341e-3 3.0774552-3 2.77513.78¢—3
Combined 3.97513.943_2 4.067:‘:9,279_1 4-07713.85‘3—4 4.070:&2‘029_4
Concrete  4.47849 0561 4.4404134e—1 4.8834+193c—1 4.88811390-1
Kin8nm  0.08946.06e—6 0.09415560—6 0.09643360—5 0.09541 3965
Wine 0.623+1.35¢-3 0.606+1.400—5 0.6141348¢c-4 0.604+9.89e—5

Table 2: Test root-mean-square-error (RMSE). Bold indicates smallest in row.
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