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Motivation

• Sample from the target distribution ρ over Rd (for bounded C1 potential V )

ρ(x) ∼ exp(−V (x))

• Applications: global optimization, Bayesian neural networks, generative modelling

etc.

• V is known, but sampling is difficult (normalizing constant, high dimensionality...)

• Common method: Markov Chain Monte-Carlo (MCMC)
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Fokker-Planck Equation

The Fokker-Planck equation is a PDE evolution in the density space.

∂ρ

∂t
= ∇ · (ρ∇V ) + β∆ρ, ρ(x, 0) = ρ0(x). (Fokker-Planck)

Steady state:

ρ∞(x) ∼ exp
(
−β−1V (x)

)
.

Equivalent particle-based evolutions for t ∈ [0,+∞):

1. SDE

dX(t) = −∇V (X(t))dt+
√
2βdW (t)
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Classical SDE-based formulation

dX(t) = −∇V (X(t))dt+
√
2βdW (t) (1)

Need to solve SDE using some discretization.

1. Forward Euler-Maruyama discretization −→ Unadjusted Langevin Algorithm1

Xk+1 = Xk − η∇V (Xk) +
√

2βηZk (ULA)

2. Adding a correction step −→ Metropolis-adjusted Langevin Algorithm (MALA)

Ergodicity from noise. Convergence from ergodic theory: evolution defines an

ergodic Markov chain, which converges to the invariant distribution.

1Zk ∼ N (0, I) i.i.d. normal
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Fokker-Planck Equation

The Fokker-Planck equation is a PDE evolution in the density space.

∂ρ

∂t
= ∇ · (ρ∇V ) + β∆ρ, ρ(x, 0) = ρ0(x). (Fokker-Planck)

Steady state:

ρ∞(x) ∼ exp
(
−β−1V (x)

)
.

Equivalent particle-based evolutions for t ∈ [0,+∞):

1. SDE

dX(t) = −∇V (X(t))dt+
√
2βdW (t)

2. Score-based ODE (where X(t) ∼ ρ(t, ·) is the density at time t)

dX

dt
= −∇V (X)− β∇ log ρ(t,X)
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Score-based ODE formulation

dX

dt
= −∇V (X)− β∇ log ρ(t,X)

• Difficulty: what is ρ(t, ·)?
• Kernel density estimation: using samples to approximate ρ(t,X)

• Caveats: mode collapse, choice of kernel, hyperparameter choices

• Directly learning the score using neural networks

• Empirically works in high dimensions, see diffusion models e.g. DALL-E

• Our proposed method: natural “choice of kernel” based on the Wasserstein

proximal (among other things).
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Wasserstein Proximal

Definition
Let ρ0 be a probability density function with finite second moment, and V ∈ C1(Rd)

be a bounded potential function. For a scalar T > 0, the Wasserstein proximal of ρ0 is

defined as

ρT = WProxTV (ρ0) := argmin
q∈P2(Rd)

∫
Rd

V (x)q(x) dx+
W(ρ0, q)

2

2T
, (2)

where W(ρ0, q) is the Wasserstein-2 distance between ρ0 and q, and P2 is the set of

probability density functions q with finite second moment.
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Inspiration: JKO2 scheme

The iterations

ρT+1 = argmin
q∈P2(Rd)

∫
Rd

V (x)q(x) + βq log q dx+
W(ρT , q)

2

2h
(3)

converge (weakly) to the solution of the Fokker-Planck equation as h → 0.

Similar to a proximal descent method in variational analysis.

2Jordan, Kinderlehler, Otto. The variational formulation of the Fokker–Planck equation. SIMA 1998.
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Regularized Wasserstein Proximals

Benamou-Brenier PDE formulation of the Wasserstein proximal:
∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = 0 (4a)

∂tΦ(t, x) +
1

2
∥∇xΦ(t, x)∥2 = 0 (4b)

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x). (4c)

Φ: Kantorovich dual variable.
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Regularized Wasserstein Proximals

Benamou-Brenier PDE formulation of the regularized Wasserstein proximal:
∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = β∆xρ(t, x) (4a)

∂tΦ(t, x) +
1

2
∥∇xΦ(t, x)∥2 = −β∆xΦ(t, x) (4b)

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x). (4c)

Φ: Kantorovich dual variable.

Later: regularized Wasserstein proximal ρ(T, x) has a closed form, as opposed to the

(non-regularized) Wasserstein proximal.
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Proposed Method

3 step approximation:

1. Approximate Fokker-Planck equation with regularized Fokker-Planck equation

• One-step time approximation using Wasserstein proximal

2. Backwards Euler time-discretization of ODE

3. Per-step approximation of density using empirical measure

This allows us to use the deterministic computation methods:

1. Deterministic computation of score using kernel formulation

2. Convolution as Monte-Carlo sampling
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Magic Ingredient 1: Backwards Discretization

Standard score-based ODE:

dX

dt
= −∇V (X)− β∇ log ρ(t,X).

Regularized score-based ODE (Liouville’s equation):

dX

dt
= ∇Φ(t,X)− β∇ log ρ(t,X).

Backwards (one-step) discretization (where Φ and ρk,T use initial condition Xk ∼ ρk,0):

Xk+1 = Xk + η∇Φ(T,Xk)− ηβ∇ log ρk(T,Xk).
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Magic Ingredient 2: Kernel Formulation3

The regularized Wasserstein proximal can be written as a convolution.

ρT (x) =

∫
Rd

K(x, y)ρ0(y) dy, (5)

K(x, y) =
exp

(
− 1

2β (V (x) + ∥x−y∥2
2T )

)
∫
Rd exp

(
− 1

2β (V (z) + ∥z−y∥2
2T )

)
dz

. (6)

3W. Li, S. Liu, S. Osher. ”A kernel formula for regularized Wasserstein proximal operators.” Research in the

Mathematical Sciences 10.4 (2023): 43.
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Magic Ingredient 2: Kernel Formulation

The convolution is (relatively) easy to compute for empirical distributions

ρ0(x) =
1

N

N∑
i=1

δxi (7)

⇒ ρT (xi) =
1

N

N∑
j=1

K(xi,xj) =
1

N

N∑
j=1

exp
[
− 1

2β

(
V (xi) +

∥xi−xj∥2
2T

)]
Z(xj)

, (8)

Z(xj) := Ez∼N (xj ,2Tβ)

[
exp

(
−V (z)

2β

)]
. (9)
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Magic Ingredient 3: Empirical Approximations

• At each step, we have some samples. This defines an empirical measure (hopefully

approximating the true measure)

• The regularized Wasserstein proximal applied to an empirical distribution has a

simple closed form

• This allows us to compute a closed-form solution
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Full algorithm

Backwards Regularized Wasserstein Proximal (BRWP) Algorithm

1. Approximate current measure using empirical measure:

ρk,0 =
1

N

N∑
i=1

δ(·|xk,i)

2. Compute score ∇ log ρk,T (xk,j) of regularized Wasserstein proximal of ρk,0

• Utilise the kernel formulation

• Three Monte Carlo integrals here: normalizing constant, ρ and ∇ρ

3. Evolve the particles according to backwards Euler-discretized regularized

Fokker-Planck equation

xk+1,j = xk,j − η∇V (xk,j)− ηβ∇ log ρk,T (xk,j), j = 1, ..., N.
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Algorithm

Algorithm 1 Backwards regularized Wasserstein proximal (BRWP) scheme

Input: Potential V , samples (x0,i)
N
i=1 ∼ µ⊗N

0 , step-size η > 0, regularization

parameters T, β > 0, Monte Carlo sample count P

Output: Sequence of samples (xk,i)
N
i=1 for k = 1, 2, ...

1: for k ∈ N do

2: for i = 1, ..., N do

3: Sample (zk,i,p)
P
p=1 ∼ N (xk,i, 2βTI)

4: Zk,i =
1
P

∑P
p=1 exp

(
−V (zk,i,p)

2β

)
5: end for

6: for i, j = 1, ..., N do ▷ Compute pre-requisites for score

7: Ek,i,j = exp
[
− 1

2β

(
V (xk,i) +

∥xk,i−xk,j∥2
2T

)]
8: Vk,i,j = − 1

2β

(
∇V (xk,i) +

xk,i−xk,j

T

)
9: end for

10: for i = 1, ..., N do

11: ∇ log ρk,T (xk,i) = (
∑

j Vk,i,jEk,i,j/Zk,j)/(
∑

j Ek,i,j/Zk,j) ▷ Compute score

12: xk+1,i = xk,i − η∇V (xk,i)− ηβ∇ log ρk,T (xk,i) ▷ Perform the update

13: end for

14: end for

• Basically 3 Monte

Carlo integrals

• Quadratic scaling in

number of samples(!)
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Gaussian analysis

1D Ornstein-Uhlenbeck process (V = ax2/2)

dX = −aXdt+
√

2βdW.

True stationary distribution of Fokker-Planck equation: N (0, β/a).

ULA MALA BRWP

N (0, 2β
(2−aη)a) N (0, β/a) N (0, βa (1− a2T 2))

Table 1: Stationary distribution of each MC

BRWP decreases variance (as opposed to ULA which increases variance)

17 / 27



Sampling Behavior (Gaussian)

T 0.05 0.25 0.5 0.999

Variance reduction phenomenon for 5-dimensional Gaussian with condition number κ = 10.
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Mixing time

For Ornstein-Uhlenbeck process V (x) = −1
2x

⊤Σ−1x. Mixing time for a Gaussian with

minimum eigenvalue L−1, maximum eigenvalue m−1, centred at x∗. κ = L/m.

Mixing time = time for distribution to be distance δ away from true distribution in

total variation.

Method Initialization Mixing time

ULA N (x∗,m−1I) O
(
dκ2 log(dκ/δ)

δ2

)
ULA N (x∗, L−1I) O

(
(d3+d log2(1/δ)

δ2

)
MALA N (x∗, L−1I) O

(
d2κ log

(
κ
δ

))
BRWP N (x∗, L−1(1− L−2T 2)−1I) O

(
κ3/2 log

(
κ
√
d/δ

))
Better dimension dependence(?)
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Sampling Behavior (Gaussian mixture)

Iter ULA MALA BRWP

50

500

Evolution of particles under ULA, MALA and BRWP for the bimodal distribution, with

step-size η = 0.01. The parameter of T was taken to be T = 0.01 for BRWP.
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Sampling Behavior (Double Banana)

Iter ULA MALA BRWP

10

100

Evolution of particles under ULA, MALA and BRWP for the bimodal distribution, with

step-size η = 0.01. The parameter of T was taken to be T = 0.01 for BRWP.
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Large Step-Size Regime

Iter ULA MALA BRWP (T = 0.1) BRWP (T = 0.2)

10

100 Diverged

Convergent behavior reappears for large step-sizes when regularization parameter is large
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Summary

• We propose a novel deterministic sampling method

based on the regularized Wasserstein proximal

• Fully characterized stationary distribution,

convergence behavior, and asymptotic bias for

quadratic potentials

• Outstanding: asymptotic theory? General

convergence rates? Approximation errors?

arXiv:2308.14945
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Definition of Wasserstein-2 Distance

Definition
For two probability density functions µ, η on Rd with finite second moment, the

Wasserstein-2 distance between µ and η is

W(µ, η) :=

(
inf

γ∈Γ(µ,η)

∫∫
Rd×Rd

∥x− y∥2γ(x, y) dx dy
)1/2

,

where the norm is the Euclidean norm, and the infimum is taken over all couplings

between µ, η, i.e. γ is a joint probability measure on Rd × Rd with∫
Rd

γ(x, y) dy = µ(x),

∫
Rd

γ(x, y) dx = η(y).
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Gaussian: closed-form recurrence

Proposition
Xk+1 is Gaussian with mean µk+1 and covariance Σk+1 given by

Σ̃−1
k+1 =

(
2βT (I + TΣ−1)−1 + (I + TΣ−1)−1Σk(I + TΣ−1)−1

)−1
, (10a)

µk+1 = (I − ηΣ−1)µk + (ηβΣ̃−1
k+1)(µk − µ̃k+1)

=
(
I − ηΣ−1 + ηβ

(
2βTI +Σk(I + TΣ−1)−1

)−1
(TΣ−1)

)
µk, (10b)

Σk+1 = (I − ηΣ−1 + ηβΣ̃−1
k+1)Σk(I − ηΣ−1 + ηβΣ̃−1

k+1)
⊤. (10c)
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Bayesian Logistic Regression

(a) ULA (b) MALA (c) BRWP T = 0.025 (d) BRWP T = 0.1

Figure 1: Plots of the samples of θ after 4000 iterations, with N = 1000 samples. Parameters

are α = 0.5, η = 0.05. For this particular instantiation, we find that θ∗ ≈ (1.16, 1.45). We

observe that for small T , we have a teardrop shaped structure. For large T , we have mode

collapse in one direction.
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Bayesian Neural Network

Dataset BRWP AIG WGF SVGD

Boston 3.309±5.31e−1 2.871±3.41e−3 3.077±5.52e−3 2.775±3.78e−32.775±3.78e−32.775±3.78e−3

Combined 3.975±3.94e−23.975±3.94e−23.975±3.94e−2 4.067±9.27e−1 4.077±3.85e−4 4.070±2.02e−4

Concrete 4.478±2.05e−1 4.440±1.34e−14.440±1.34e−14.440±1.34e−1 4.883±1.93e−1 4.888±1.39e−1

Kin8nm 0.089±6.06e−60.089±6.06e−60.089±6.06e−6 0.094±5.56e−6 0.096±3.36e−5 0.095±1.32e−5

Wine 0.623±1.35e−3 0.606±1.40e−5 0.614±3.48e−4 0.604±9.89e−50.604±9.89e−50.604±9.89e−5

Table 2: Test root-mean-square-error (RMSE). Bold indicates smallest in row.
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