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• Goal: learning a regularizer from only measurements  

• Setting: one-shot corrupted dataset, no ground truth 

• Rules out Noise2Noise, Noise2Inverse 

• Still OK: Equivariant Imaging, deep image prior 

• Non-blind: assume known forward operator (i.e. likelihood) 

• Existing Bayesian methods: hand-crafted models (e.g. 

TV, wavelet), one image at a time 

• This: neural network regularizer, for a whole dataset 

 

Theorem. Assume that                        is convex w.r.t.    . If  

 

 

takes the form of a convex ridge regularizer, then the SAPG iterates  

converge ergodically to the maximum marginal likelihood estimator. 
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Key Takeaways: 

 1. Working application of stochastic optimization in high dimensions  

         (CRR network parameters, from                        to            )   

 2. Small performance gap to full supervision with same architecture 

   3. Leverage statistics of many corrupted images to create a strong prior 

Bayesian approach: maximum likelihood estimation. 

•  Given only measurements      , find the best     that fits the data 

•  For a data prior                                 and likelihood           ,   

Convex Ridge Regularizer
[3] 

parameterized as  

convolution 

convex “profile” functions: piecewise  

quadratic splines 

MMLE: 

Main Idea 

Use the current    to sample from  
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Want to solve with  

gradient methods 

Use MCMC to approximate  

expectations: unadjusted 

Langevin algorithm (ULA) 

Apply estimate for gradient  
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Method 

(Regularity conditions) 
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Paper (TMLR’24) 

• Convergent MAP estimation 

• “Medium” parameter # (~ 105) 

• Supervised version: unrolled gradient step 

• Easy to compute derivative (no autograd) 

Deep image prior (DIP) 

• Corrupted measurement only 

• Not applicable to datasets 

• Heuristic early stopping 

Equivariant Imaging (EI) 

• Unsupervised (same setting) 

• Requires knowledge of  forward operator 

group invariances 

• End-to-end (~107 parameters) 

 

Fidelity          , regularizer 

Uncertainty Quantification 

MMSE 

estimation 

using MCMC 
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Working high-dimensional Bayesian optimization 

Fast optimization-based MAP estimation 

Uncertainty quantification for MMSE estimation 

Model generalization to different forward operators 

Computational efficiency:                is enough! [2]
  

+ - Slow training (~3 days instead of ~3   

     hours for supervised) 

Monte Carlo: slow convergence of 
MMSE estimates (~20k samples) 

Strong convergence assumption on data 
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