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Markov Chain Monte Carlo methods (MCMC)

We wish to sample from

π(x) ∝ exp(−βV (x))

▶ V (x) is a C1 potential function

▶ β > 0 a temperature parameter

Applications/related tasks:

▶ Uncertainty quantification,

▶ generative modelling, score matching,

▶ Bayesian inverse problems, Bayesian parameter estimation...
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Langevin methods

Based on discretizations of the SDE (where W is a Wiener process)

dX = −∇V (X)dt+
√

2β−1dW

(Ex.) Euler–Maruyama → Unadjusted Langevin algorithm

Xk+1 = Xk − η∇V (Xk) +
√

2β−1ηZk (ULA)

for step-size η > 0, where Zk i.i.d. Gaussians.

▶ ULA converges to a biased stationary distribution for η > 0

▶ Adding Metropolis–Hastings correction step → Metropolis-adjusted
Langevin algorithm (MALA)

– Correction step ensures the correct stationary distribution

▶ Convergence from ergodic theory, using e.g., Poincaré or log-Sobolev
inequality
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Liouville equation

The density of the SDE (overdamped Langevin dynamics)

dX = −∇V (X)dt+
√

2β−1dW (SDE)

corresponds to the Fokker–Planck equation

∂ρ

∂t
= ∇ · (∇V (x)ρ) + β−1∆ρ (FP-ODE)

which induces a deterministic particle evolution

dX

dt
= −∇V (X)− β−1∇ log ρ(X) (Liouville)

Challenge: what is the particle density at time t?

▶ Kernel density estimation

▶ Learned scores (e.g. diffusion models)

This work: based on regularized Wasserstein proximal operators (to be
defined)
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Talk structure

1. Application and numerics

– Sampling algorithm
– Connections to transformers
– Convergence rate
– Examples

2. Derivation

– Regularized Wasserstein proximal defined as coupled PDEs
– Discretizing the Liouville equation from a modified Fokker–Planck

equation
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Transforming the ODE

dX

dt
= −∇V (X)− β−1∇ log ρ(X)

Replace ∇ log ρ(X) with the “regularized Wasserstein proximal”
∇ logWProx ρ(X) defined later:

dX

dt
= −∇V (X)− β−1∇ logWProx ρ(X) (1)

Facts: (derive later)

▶ WProx ρ admits an approximable kernel formula;

▶ Liouville equation (1) arises as the continuous limit of the kernel
formula.

After applying a particular semi-implicit time discretization, we obtain...
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Preconditioned BRWP algorithm

BRWP1: “Backwards Regularized Wasserstein Proximal”.
Sampling ∝ exp(−βV (x)) for collection of particles
X =

[
x1 ... xN

]
∈ Rd×N :

X(k+1) = X(k) − η

2
M ∇V (X(k))︸ ︷︷ ︸

dynamics

+
η

2T

(
X(k) −X(k)softmax(W (k))⊤

)
︸ ︷︷ ︸

diffusion

where interaction matrix

Wij = −β
∥xi − xj∥2M

4T
− log

∫
Rd

e−
β
2 (V (z)+

∥z−xj∥
2
M

2T ) dz .

and M ∈ Sym++(Rd) is some preconditioning matrix.

1Tan, Osher, L. Noise-free sampling algorithms via regularized Wasserstein
proximals.
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Preconditioned BRWP algorithm
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Comparison: Mirror Langevin Algorithm (MLA)

Xk+1 = Xk − η∇V (Xk) +
√

2β−1ηZk (ULA)

ULA can also be preconditioned to obtain MLA

Xk+1 = Xk − ηM∇V (Xk) +
√
2β−1η

√
MZk (MLA)

Difference in diffusion:

MLA N (0, 2β−1ηM)
PBRWP X(k) −X(k)softmax(W (k))⊤

The preconditioner affects the inter-particle diffusion weights.

Where does the softmax come from? Exactly logWProx ρ.
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Relation with kernel methods

Consider the Gaussian kernel k(x, y) = exp
(
−∥x− y∥2/2T

)
with

bandwidth T . For points {xi}Ni=1,

ρKDE(xi) =
1

N

N∑
j=1

exp
[
−∥xi−xj∥2

2T

]
(2πT )d/2

ρRWPO(xi) =
1

N

N∑
j=1

exp
[
−β

2

(
V (xi) +

∥xi−xj∥2
M

2T

)]
Z(xj)

Recall approximate Liouville equation:

dX

dt
= −∇V (X)− β−1∇ log ρapprox(X)

Main differences:
▶ Usage of V inside kernel
▶ Normalizing constant Z

N.B. Both can be written as a transformer structure
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Transformer Attention Diffusion

Transformer structure (up to scaling):

Attn(Q;K,V ) = V softmax
(
Q⊤K

)⊤
.

Self attention: X 7→ Attn(Q(X);K(X), V (X))

X(k+1) = X(k) − η

2
M∇V (X(k)) +

η

2T

(
X(k) −X(k)softmax(W (k))⊤

)
W

(k)
ij = −β ∥xi − xj∥2M

4T
− log

∫
Rd

e−
β
2 (V (z)+

∥z−xj∥
2
M

2T ) dz︸ ︷︷ ︸
=:logZ(xj)

.

Diffusion rewritten as masked-attention structure:

(Red) = softmax(Q⊤K − 1z⊤)⊤,

Q⊤K = − β

2T
X⊤M−1X, zj = logZ(xj) + β

∥xj∥2M
4T

, V = X.
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Accelerated diffusion

MALA MLA BRWP PBRWP

Figure: Evolution of the various methods for the stretched annulus at iterations
10, 50, and 200.
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Quantitative evidence

0 25 50 75 100 125 150 175 200
Iteration

10 1

100

KL
(

k,
)

Annulus KL distance
ULA
MALA
MLA
BRWP
PBRWP

Figure: The KL distance to the ground truth converges faster (using Gaussian
bandwidth estimator)
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High-dimensional deconvolution

V (x) =
1

2
∥Ax− y∥2 + λTV(x)

where A is a convolution operator and y is a corrupted image.
Precondition with A∗A. Std for 40 particles:

Itr ULA MYULA MLA PBRWP

20

200

2000
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Discrete-time convergence of PBRWP

Fact: For quadratic potentials, Gaussians stay Gaussian under PBRWP.

Theorem
Consider the potential V = x⊤Σ−1x/2, corresponding to target
stationary distribution π ∼ N (0,Σ). Suppose the preconditioner satisfies
cM ⪯ Σ ⪯ CM , and let T ∈ (0, c). Then:

1. The invariant distribution π̂ of PBRWP satisfies WProx π̂ = π,

2. For sufficiently small step-size η > 0 (closed form), the PBRWP
iterations converge as follows, where ρ̃k = WProx ρ(Xk),

DKL(ρ̃k+1∥π)−DKL(ρ̃k∥π)

≤ − η

2C[β + 2T (1 + TC−1)−1(1 + Tc−1)2λ−1]
DKL(ρ̃k∥π). (2)

▶ Bias is characterized by inverting the regularized Wasserstein
proximal operator

Theory and derivation 15
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Verifying the bias

Problem: sampling from a 2D standard Gaussian

Particles

3 4 5 6

0.2

0.4

0.6

Iter 100

0.2

0.4

0.6

Iter 100

0.2

0.4

0.6

0.8

Iter 100

0.2

0.4

0.6

0.8

1.0

Iter 100

Figure: Densities of the regularized Wasserstein proximal WProxI
0.2I for the

2-dimensional standard Gaussian at iteration 100, done with n ∈ {3, 4, 5, 6}
particles. Density of the Wasserstein proximal gradually becomes more
spherical and Gaussian-like.

Observation: The regularized Wasserstein proximal of the empirical
distribution approaches the standard Gaussian.
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Defining the Regularized Wasserstein Proximal

What is WProx? Adding Laplacian regularization to the
Benamou–Brenier formulation:

∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = β−1∆xρ(t, x),

∂tΦ(t, x) +
1
2∥∇xΦ(t, x)∥2 = −β−1∆xΦ(t, x),

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x).

The terminal solution yields a kernel representation, denoted WProxT,V

WProxT,V ρ(x) := ρ(T, x) =

∫
Rd

K(x, y)ρ(y) dy,

K(x, y) =
exp

(
−β

2 (V (x) + ∥x−y∥2

2T )
)

∫
Rd exp

(
−β

2 (V (z) + ∥z−y∥2

2T )
)
dz

.

K is convolution with a heat kernel.
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Cole–Hopf transform

The regularized Benamou–Brenier formulation arises from coupled heat
equations:

∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = β−1∆xρ(t, x),

∂tΦ(t, x) +
1
2∥∇xΦ(t, x)∥2 = −β−1∆xΦ(t, x),

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x)

⇕
∂tη̂(t, x) = β−1∆η̂(t, x),

∂tη(t, x) = −β−1∆η(t, x),

η(0, x)η̂(0, x) = ρ0(x), η(T, x) = e−βV (x)/2.

The coupled heat equations give rise to the kernel formulation.

Theory and derivation 18



Preconditioning

Goal: we want a different norm in the kernel.
Question: What is the corresponding PDE system?
To use a different kernel, M ∈ Rd×d symmetric +ve def,

KM (x, y) =
exp

(
− 1

2β (V (x) +
∥x−y∥2

M

2T )
)

∫
Rd exp

(
− 1

2β (V (z) +
∥z−y∥2

M

2T )
)
dz

.

Anisotropic heat kernel KM is Green’s function for anisotropic heat eq.

∂tu = ∇ · (M∇u)

Theory and derivation 19



Derivation

By using Cole–Hopf transform on coupled anisotropic heat equations
∂tη̂(t, x) = β−1∇ · (M∇η̂(t, x))
∂tη(t, x) = −β−1∇ · (M∇η(t, x)),
η(0, x)η̂(0, x) = ρ0(x), η(T, x) = e−βV (x)/2

⇓
∂tρ(t, x) +∇ · (ρ(t, x)∇Φ(t,M−1x)) = β−1∇ · (M∇ρ)(t, x)
∂tΦ(t,M

−1x) + 1
2∥∇Φ(t,M

−1x)∥2M = −β−1 Tr
(
M−1(∇2Φ)(t,M−1x)

)
ρ(0, x) = ρ0(x), Φ(T,M−1x) = −V (x)

▶ Changing the norm ⇔ changing the PDE regularization.

▶ Admits a kernel formula. Our score approximator is computable.
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Time discretization

The first equation is a modified Fokker–Planck equation:

∂tρ(t, x) +∇ · (ρ(t, x)∇Φ(t,M−1x)) = β−1∇ · (M∇ρ)(t, x) (3)

which corresponds to the particle evolution

dX

dt
= ∇Φ(t,M−1X)− β−1M∇ log ρ(t,X). (4)

Use:

1. Boundary condition ∇Φ(T,M−1X) = −M∇V (x)

2. Solution ρ(T,X) = WProxT ρ0(X) (kernel formula)

Then using a semi-implicit discretization, the particle evolution is

Xk+1 = Xk + η
(
−M∇V (Xk)− β−1M∇ logWProxMT,V ρk(Xk)

)
(5)

Theory and derivation 21
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Getting something computable

Xk+1 = Xk + η
(
−M∇V (Xk)− β−1M∇ logWProxMT,V ρk(Xk)

)

using the kernel formula

WProxMT,V ρ(x) =

∫
Rd

KM (x, y)ρ(y) dy.

For some particles {x1, ...,xN}, empirical dist. ρ = 1
N

∑N
l=1 δ(xl),

WProxMT,V ρ(xi) =
1

N

N∑
j=1

KM (xi,xj)

=
1

N

N∑
j=1

exp

(
− 1

2β

(
V (xi) +

∥xi − xj∥2M
2T

)
− logZ(xj)

)
Differentiate w.r.t. xi to yield the iterations

X(k+1) = X(k) − η

2
M∇V (X(k)) +

η

2T

(
X(k) −X(k)softmax(W (k))⊤

)
.
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Summary

▶ We present a principled density estimator based on regularized
Wasserstein proximal

▶ The diffusive term is a self-attention block

▶ Preconditioning the kernel corresponds to modified second-order
regularization

– Derived using a Cole–Hopf transform
– Accelerated convergence

▶ Discrete-time convergence for quadratic potential

Future work:

▶ Discrete particle dynamics - explaining the structure

▶ Convergence for more general distributions

▶ Position-dependent preconditioning?
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High-dimensional modifications

As in transformers, which take

Attn(Q;K,V ) = V softmax
(
Q⊤K/

√
d
)⊤

, (6)

we may directly take the diffusion β =
√
d to prevent mode collapse.
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Ill-conditioned Gaussian

50 dimensions, condition number 50.

β = 1 β = d−1/2
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Bayesian neural networks

We can empirically use variable preconditioners.

Table: Test root-mean-square-error (RMSE) on test datasets on various
Bayesian neural network tasks. Bold indicates smallest in row. We observe that
the adaptive Fisher preconditioned BRWP uniformly outperforms BRWP on
each of the BNN tasks. Adam and the noise-free methods both generally
exhibit high variance in this setting, which may be due to the relatively small
neural network architecture and sensitivity to initialization. We may further
interpret the high variance of these methods as being able to find better trained
models.

Dataset Adam PBRWP BRWP AIG WGF SVGD

Boston 3.350±8.33e−1 2.866±5.94e−1 3.309±5.31e−1 2.871±3.41e−3 3.077±5.52e−3 2.775±3.78e−32.775±3.78e−32.775±3.78e−3

Combined 3.971±1.79e−1 3.925±1.52e−13.925±1.52e−13.925±1.52e−1 3.975±3.94e−2 4.067±9.27e−1 4.077±3.85e−4 4.070±2.02e−4

Concrete 4.698±4.85e−1 4.387±4.88e−14.387±4.88e−14.387±4.88e−1 4.478±2.05e−1 4.440±1.34e−1 4.883±1.93e−1 4.888±1.39e−1

Kin8nm 0.089±2.72e−3 0.087±2.67e−30.087±2.67e−30.087±2.67e−3 0.089±6.06e−6 0.094±5.56e−6 0.096±3.36e−5 0.095±1.32e−5

Wine 0.629±4.01e−2 0.612±4.17e−2 0.623±1.35e−3 0.606±1.40e−5 0.614±3.48e−4 0.604±9.89e−50.604±9.89e−50.604±9.89e−5
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Adam preconditioner

Algorithm Adam-based Preconditioner

Data: Objective function f , exponential decay rates β2 = 0.999, point
sequence (x(l))l≥1, epsilon ϵ = 0.001.

Result: Preconditioners M (k), where M (k) = M (k)(x(1), ..., x(k)).
v0 ← 0; // initialize second moment vector

for k = 1, ...,K do
gk ← ∇f(x(k)) ; // compute gradient

vk ← β2vk−1 + (1− β2)g
2
k ; // update second moment estimate

v̂k ← vk/(1− βk
2 ) ; // bias correction

M (k) = diag(1/(
√
v̂k + ϵ)) ; // construct preconditioning

matrix

end

return (M (k))Kk=1.
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Other works

Application of regularized Wasserstein proximal to accelerated density
ODEs: {

dX = Pdt,

dP = −αPdt−∇V (X)dt−∇ log ρ(X)dt
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Wasserstein proximal/Benamou–Brenier

The Wasserstein proximal with linear energy and potential V is

WProxT,V (ρ0) := argmin
q∈P2(Rd)

∫
Rd

V (x)q(x) dx+
W(ρ0, q)

2

2T
. (7)

This equivalently is
∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = 0

∂tΦ(t, x) +
1
2∥∇xΦ(t, x)∥2 = 0

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x).

(8)

a combination of a (forward time) Fokker–Planck equation and
(backward time) HJ equation.
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Cole–Hopf transform (1)

The kernel

Gt,M (x, y) :=
1

(4πβ−1t)d/2|M |1/2
e−β

(x−y)⊤M−1(x−y)
4t . (9)

is a Green’s function for{
∂tu− β−1∇ · (M∇u) = 0,

u(0, x) = δ(y).

We consider the coupled forward-backward anisotropic
∂tη̂(t, x) = β−1∇ · (M∇η̂(t, x)),
∂tη(t, x) = −β−1∇ · (M∇η(t, x)),
η(0, x)η̂(0, x) = ρ0(x), η(T, x) = eβΦ(T,x)/2 = e−βV (x)/2.

(10)

From B.C., η(0) has a kernel formula, so η̂(T ) has a kernel formula.
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Cole–Hopf transform (2)

The Cole–Hopf transform is{
η(t, x) = eβΦ(t,M−1x)/2

η̂(t, x) = ρ(t, x)e−βΦ(t,M−1x)/2
⇔

{
Φ(t, x) = 2β−1 log η(t,Mx)

ρ(t, x) = η(t, x)η̂(t, x)
.

(11)
Under this, we have

∂tη(t, x) = −β−1∇ · (M∇η(t, x))
⇓

∂tΦ(t,M
−1x) +

1

2
∥∇Φ(t,M−1x)∥2M = −β−1 Tr

(
M−1(∇2Φ)(t,M−1x)

)
,

∂tη̂(t, x) = β−1∇ · (M∇η̂(t, x))
⇓

∂tρ+∇ · (ρ(t, x)∇Φ(t,M−1x)) = β−1∇ · (M∇ρ)
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