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Motivation

v

Convex optimisation problems occur naturally in fields
concerned with data analysis

Reconstruct x from noisy measurement y

v

y = AX 4 e ~ X = argmin ||Ax — y||? + g(x)
X

v

Do faster methods exist for specific classes of problems?

This talk: Yes they do, we can learn them from data, and we
can do so in a convergent manner.

» Learning to optimize: optimization as a task

v
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What is a “specific class”?

v

No mathematical definition, only qualitative

Problems are “similar”, e.g. forward operator, data type
Examples: chest CT, natural image denoising

Related: image manifold assumption

v

v

v
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Background: learning to optimize

» Use neural network to parameterize update in terms of
previous iterates
» Ad-hoc convergence guarantees
» Parameterize as combination of proximal steps
» Limited number of parameters

» This work: Convergent NN-based parameterization

' N*%\,‘\L‘ T — Gradient Descent
105 \\"\\x,\\ || = Nesterov
RN —— Learned, o = 0.9
~_ —— Learned w/o convergence
100 || o/n)
——0O(1/n?)
1073
10—6 L Ll Lol
100 10t 102 103 1

"Banert et al., Data-driven nonsmooth optimization, SIAM Optimization, 2020
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Background: Mirror Descent

Problem: Minimize convex function f : ¥ = R" = R
» Recall gradient descent with step-size #:

Xk+1 = Xk — nVF(Xk).

W is C' strongly convex, W™ is the convex conjugate
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Background: Mirror Descent

Problem: Minimize convex function f : ¥ = R" = R
» Recall gradient descent with step-size #:

Xk+1 = Xk — nVF(Xk).

» Issue: terms on RHS are not in the same space

Xkr1 = Xk —nVIH(Xg).
ex e

» Solution: have a (bijective) mirror map VV : X — X*, with
inverse (VW)™ = Vu*: x* - x

W is C' strongly convex, W™ is the convex conjugate
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Background: Mirror Descent

» This gives mirror descent (for strongly convex C' W):

X1 = (VW) 7T [VW () — nVF(xe)] (MD)

Viby (x0) — g,

Figure: Schematic for MD?

2Image: F. Orabona. Online Mirror Descent Il: Regret And Mirror Version.
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Interpretations of MD

Xkp1 = (VW) [V () = nVF(x)]] (MD)
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Interpretations of MD

Xt = (VW) VW 0x) = nVF(x)]] (MD)
1. Proximal method with non-Euclidean divergence

» GD: X1 = argmin, {Vf(xk)Tx + 2177HX — Xk||§}

» MD: X1 = arg min, [Vf(xk)Tx + %Bw(x, xk)}
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Interpretations of MD

Xkp1 = (VW) [V () = nVF(x)]] (MD)

1. Proximal method with non-Euclidean divergence
» GD: Xc, ¢ = argmin, {Vf(xk)Tx + 2177HX — Xk||§}
» MD: x 1 = argmin, [Vf(xk)Tx + 1Bu(x, xk)}
2. Weirdly-discretized Riemannian/preconditioned gradient flow

X=— <V2\Il(x))71 VF(x) (RGF)
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Interpretations of MD

Xkp1 = (VW) [V () = nVF(x)]] (MD)

1. Proximal method with non-Euclidean divergence
» GD: Xc, ¢ = argmin, {Vf(xk)Tx + 2177HX — Xk||§}
» MD: x 1 = argmin, [Vf(xk)Tx + 1Bu(x, xk)}
2. Weirdly-discretized Riemannian/preconditioned gradient flow

X=— <V2\Il(x))71 VF(x) (RGF)

» Lower Lipschitz constant — larger step-size — faster
convergence
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Example: quadratic loss

» Optimizing f(x) = 3x2 + x3. “Optimal” W(x) = 9x2 + X3.

1.0
- MD

0.8 —— GD
0.6
s
0.4

0.2

0.0

00 02 04 06 08 10
V2

Figure: Optimization paths for MD and GD from (1, 1). MD does not bend,
allowing for larger step-size.
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Classical convergence

Theorem (Informal)

Suppose f : X — R is convex, has L-Lipschitz gradient, and attains
its minimizer in X. Then for suitable step-size and mirror map,
mirror descent has convergence rate

f(xe) — f(x*) = O(1/k).

If additionally f is p-strongly convex, mirror descent converges
linearly:
—k
o
f — f(x*) = 14+ — :
() — F(x") 0(( + ) )
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Learning MD

MD: Xk = (VW) [V (xk) — nVF(X)] .-
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Learning MD

MD: X1 = (VW) [VW(Xk) = nVF(xk)] -

LMD: Kyct1 = (VM) [VMy(%) — nVF(5)]

» Goal: learn mirror maps VMy ~ VWV, VM; ~ VU*, where V is
the “optimal” mirror map for a given function class F.
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Learning MD

MD: X1 = (VW) [VW(Xk) = nVF(xk)] -

LMD: Kyct1 = (VM) [VMy(%) — nVF(5)]

» Goal: learn mirror maps VMy ~ VWV, VM; ~ VU*, where V is
the “optimal” mirror map for a given function class F.

Classical Learned
V" = (V)T VM ~ (VMy)~!
WV is strongly convex | My, My are strongly convex
Vs (! My, My are C1
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Convergence mechanism

» How do we get convergence in the learned version?

Classical Algorithm Classical Convergence

Assumptions

Learned Algorithm Convergence?
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Convergence mechanism

» How do we get convergence in the learned version?

» A. Modify the classical MD convergence results to the
“approximate MD” case.

Classical Convergence

Classical Algorithm
A

1
Lo ]
Approximation
1
1
1

Learned Algorithm Convergence

Assumptions

Generalization

-l - ———— -
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LMD Convergence guarantees

Theorem (Informal)

Let f be relatively L-smooth with respect to the mirror map V.
Suppose the approximation error

L{VW(x)) — VV(X), x — %) + (VF(x;), X — x;) (1)
is uniformly bounded (above) by M. Approximate MD satisfies

min (%) — f(x) = O(1/k) + M.

1<i<k

If f is also relatively u-strongly convex with respect to V,

min f(%) — f(x) = O (c—k) + M.

1<i<k
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Training objective

LMD goals (1) and (2) for a class of functions F:

(1). Minimize objective functions f as quickly as possible;

(2). Enforce VM; ~ (VM,)~" by minimizing ||[VM; o VM, — ||
= Training objective:

X1 = VM (VMp(X) — 4V (%)) ;

=Y E[f(Zn)] +Ex [[VM; o VM, — I]].
fer (1) @)
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Example: Inpainting

v

STL-10 dataset, 96 x 96 colour images

Corrupted y using mask M with 20% missing pixels, 5%
Gaussian noise

Inpaint using TV regularization:

v

v

minf(x;y) = [Mo (x = y)|5 + M VX[

Function class® to learn LMD on:

v

F = {f(x; y) | corrupted images y}

3This is split into training and testing subsets.
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It's fast

Reconstruction Loss

103 -
=<
N
\\
102 4 .
~
“
|
% 10t
=
10°y — GD
—— Nesterov
--- LMD
10—1 .
10° 10t 102 102

Iteration

Figure: Much faster at small iterations
On unseen data (in test set).
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Sanity check

o e B L 3 Y k- H - "

[FE e . i o O ~ R

TV-based reconstructions. Left to right: masked image, learned MD
reconstruction, Adam based reconstruction.
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What is it doing?

» Seems to “invert” the gradient at edges - sharpening?

1.5
1.0
0.5
0.0
-0.5

Figure: Pixel-wise VW (y)/y (red channel)

18/33



It can be faster

» Recent work: It turns out we can accelerate LMD and also
add stochasticity!
» Same pipeline: replace mirror maps in AMD with learned

versions
» Convergence theory: similar to that of AMD
» Convergence of accelerated LMD is to the minimum instead of
minimum plus constant
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Even faster

Reconstruction Loss

10° 4
102 4
“
|
g n
= 10
10°y — @D
—— Nesterov
--- LMD
10-] 777 LamD
10° 10t 10? 10°

Iteration

Figure: Reconstruction loss
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Extension to non-convex NN training

» General idea: permuting intermediate features does not affect
the final neural network (as a function) (invariance)

» Therefore, each individual element should be treated similarly
to others in the same layer

» Allows for a layer-wise parameterization

Hidden Layers

Input Layer Output Layer

O==0.

XS XK
CEREL IR
X

IR XX
ARSI TR
.,;Qw@\\",/ XS

2SR
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Equivariance of L20

Proposition

Let(Z,(-,-)) be a Hilbert parameter space. Suppose that group G
acts on Z linearly, such that

1. The loss function L : Z — R is stable under G, that is,
L(g-z)=L(z)foranygec Gandz € Z;
2. The laws p(z(9) and p(g - z(9)) coincide for any g € G.

Then starting from a G-equivariant optimizer, a learned optimizer
will continue to be G-equivariant.
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Example: Weighted ¢, potential

» Effectively give each element its own step-size (diagonal
preconditioning).

» LMD Problem: Train a 1-hidden-layer neural network to classify
2D moons data (faster)

Componentwise weighting

— A
25 — b1
— A

20

15

10 1

Figure: We observe that the LMD weights for the second layer matrix A
are almost constant. We see 2 bands for first matrix layer A from the 2
input dimensions. 23/33



Initial experiments

Training negative log-likelihood — sab Test accuracy

10 ——SplineLAMD 10 —— splineLAMD
120
100
80 0.6
60
40

20 02+

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Figure: Comparison of training a four-hidden-layer neural network with
SGD, Adam, and accelerated LMD for MNIST classification.

» LAMD is able to achieve very close performance to Adam (with
different generalization performance!)
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LMD: Summary

» MD: utilizing problem geometry — faster optimization
» LMD: data-driven geometry*
» Free equivariance for L20!°
Outlook
» Interpretability
» Optimal mirror maps?
» Characterising “smallness” of a class of functions

*HYT, Mukherjee, Tang, Schénlieb. Data-driven mirror descent with
input-convex neural networks. SIMODS, 2023.
SHYT, Mukherjee, Tang, Schénlieb. Boosting data-driven mirror descent with

randomization, equivariance, and acceleration. TMLR, 2024.
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Definition of a derivative

Definition
A function f : U — R is differentiable at x € U if there exists a linear
map A : RY — R such that for every h,

i f(x + th) — f(x) — tA(h)
tl—% t

=0.

We write A = Df(x) € B(RY, R).
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Bregman divergence

Bn(y; x) = h(y) = h(x) = (Vh(x),y — X) (@)
for convex distance generating function h: X — R

»n

h

Dh(,,x)

v
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Assumptions for MD

» Standard choices for ¥ : R” — R: strongly convex ('
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Assumptions for MD

v

Standard choices for W : R” — R: strongly convex ('
Convex conjugate V*(p) = sup,cra{(p, X) + f(x)}

» VU = (V)T
MD utilizes geometry of the problem

Lower Lipschitz constant — larger allowed step-size — faster
convergence

v

v

v
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Example: simplex

Example
KL divergence on the simplex A = {x ¢ R9: x >0, 3, x; = 1}

d
X.
min KL(x||y) = Xjlo '>
xeh (xlly) ;I g<Yi
Probabilistic distance: negative entropy

V(x) =Y xlogxif x € A, + oo otherwise
J

exp(y)

VU (x) = 1+ log(x), VV*(y) = S ep(y)
)
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Example: KL on simplex

AR R AR S A A S,

20 40

Green: MD with entropy function. Red: Projected subgradient descent
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Example: least squares on simplex

40 50

Green: MD with entropy function. Red: Projected subgradient descent
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(1) (2) (2)
) W » Z1 Wi » 22 W > 23— Tk
A
(y} A A
W W
Wiy

The function V is convex in y if all W,.(z ) are non-negative, and all
functions g; are convex and non-decreasing.
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Convergence guarantees

Theorem (Formal)

Let f be relatively L-smooth and relatively y.-strongly-convex relative
to the mirror map V, with L > 0, u > 0. Consider the iterations

Xk41 = arg T(in {<X, Vf(;(k» = LB\V(X, )?k)} s )N(k_H R XK1 (3)
Xe

i.e. approximate MD with fixed step size 1/L. Let x € X. Suppose
L(VW(x) — VV(X;), x — X;) + (VI(X;), X — X;) (4)

is uniformly bounded (above) by M. We have the following bound:

P ¥ MB\U(X7)?0) L_,U ~
i) — g L= =/ < — = )
[0 e =lies) = (Gt o) +M < = =By (x, %) + M. (5)

33/33



