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Motivation

▶ Convex optimisation problems occur naturally in fields
concerned with data analysis

▶ Reconstruct x from noisy measurement y

y = Ax + ε⇝ x̂ = argmin
x

∥Ax − y∥2 + g(x)

▶ Do faster methods exist for specific classes of problems?
▶ This talk: Yes they do, we can learn them from data, and we

can do so in a convergent manner.
▶ Learning to optimize: optimization as a task
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What is a “specific class”?

▶ No mathematical definition, only qualitative
▶ Problems are “similar”, e.g. forward operator, data type
▶ Examples: chest CT, natural image denoising
▶ Related: image manifold assumption
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Background: learning to optimize

▶ Use neural network to parameterize update in terms of
previous iterates

▶ Ad-hoc convergence guarantees
▶ Parameterize as combination of proximal steps

▶ Limited number of parameters
▶ This work: Convergent NN-based parameterization

1

1Banert et al., Data-driven nonsmooth optimization, SIAM Optimization, 2020
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Background: Mirror Descent

Problem: Minimize convex function f : X = Rn → R
▶ Recall gradient descent with step-size η:

xk+1 = xk − η∇f (xk ).

▶ Issue: terms on RHS are not in the same space

xk+1 = xk︸︷︷︸
∈X

−η∇f (xk )︸ ︷︷ ︸
∈X ∗

.

▶ Solution: have a (bijective) mirror map ∇Ψ : X → X ∗, with
inverse (∇Ψ)−1 = ∇Ψ∗ : X ∗ → X

Ψ is C1 strongly convex, Ψ∗ is the convex conjugate
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Background: Mirror Descent

▶ This gives mirror descent (for strongly convex C1 Ψ):

xk+1 = (∇Ψ)−1 [∇Ψ(xk )− η∇f (xk )] (MD)

Figure: Schematic for MD2

2Image: F. Orabona. Online Mirror Descent II: Regret And Mirror Version.
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Interpretations of MD

xk+1 = (∇Ψ)−1 [∇Ψ(xk )− η∇f (xk )]] (MD)

1. Proximal method with non-Euclidean divergence
▶ GD: xk+1 = argminx

[
∇f (xk )

⊤x + 1
2η∥x − xk∥2

2

]
▶ MD: xk+1 = argminx

[
∇f (xk )

⊤x + 1
ηBΨ(x , xk )

]
2. Weirdly-discretized Riemannian/preconditioned gradient flow

ẋ = −
(
∇2Ψ(x)

)−1
∇f (x) (RGF)

▶ Lower Lipschitz constant → larger step-size → faster
convergence

7 / 33



Interpretations of MD

xk+1 = (∇Ψ)−1 [∇Ψ(xk )− η∇f (xk )]] (MD)

1. Proximal method with non-Euclidean divergence
▶ GD: xk+1 = argminx

[
∇f (xk )

⊤x + 1
2η∥x − xk∥2

2

]
▶ MD: xk+1 = argminx

[
∇f (xk )

⊤x + 1
ηBΨ(x , xk )

]

2. Weirdly-discretized Riemannian/preconditioned gradient flow
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Example: quadratic loss

▶ Optimizing f (x) = 3x2
1 + x2

2 . “Optimal” Ψ(x) = 9x2
1 + x2

2 .

Figure: Optimization paths for MD and GD from (1,1). MD does not bend,
allowing for larger step-size.
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Classical convergence

Theorem (Informal)

Suppose f : X → R is convex, has L-Lipschitz gradient, and attains
its minimizer in X . Then for suitable step-size and mirror map,
mirror descent has convergence rate

f (xk )− f (x∗) = O(1/k).

If additionally f is µ-strongly convex, mirror descent converges
linearly:

f (xk )− f (x∗) = O

((
1 +

µ

L − µ

)−k
)
.
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Learning MD

MD: xk+1 = (∇Ψ∗) [∇Ψ(xk )− η∇f (xk )] .

LMD: x̃k+1 = (∇M∗
ϑ) [∇Mθ(x̃k )− η∇f (x̃k )] .

▶ Goal: learn mirror maps ∇Mθ ≈ ∇Ψ, ∇M∗
ϑ ≈ ∇Ψ∗, where Ψ is

the “optimal” mirror map for a given function class F .

Classical Learned
∇Ψ∗ = (∇Ψ)−1 ∇M∗

ϑ ≈ (∇Mθ)
−1

Ψ is strongly convex Mθ,Mϑ are strongly convex
Ψ is C1 Mθ,Mϑ are C1

10 / 33



Learning MD

MD: xk+1 = (∇Ψ∗) [∇Ψ(xk )− η∇f (xk )] .

LMD: x̃k+1 = (∇M∗
ϑ) [∇Mθ(x̃k )− η∇f (x̃k )] .

▶ Goal: learn mirror maps ∇Mθ ≈ ∇Ψ, ∇M∗
ϑ ≈ ∇Ψ∗, where Ψ is

the “optimal” mirror map for a given function class F .

Classical Learned
∇Ψ∗ = (∇Ψ)−1 ∇M∗

ϑ ≈ (∇Mθ)
−1

Ψ is strongly convex Mθ,Mϑ are strongly convex
Ψ is C1 Mθ,Mϑ are C1

10 / 33



Learning MD

MD: xk+1 = (∇Ψ∗) [∇Ψ(xk )− η∇f (xk )] .

LMD: x̃k+1 = (∇M∗
ϑ) [∇Mθ(x̃k )− η∇f (x̃k )] .

▶ Goal: learn mirror maps ∇Mθ ≈ ∇Ψ, ∇M∗
ϑ ≈ ∇Ψ∗, where Ψ is

the “optimal” mirror map for a given function class F .

Classical Learned
∇Ψ∗ = (∇Ψ)−1 ∇M∗

ϑ ≈ (∇Mθ)
−1

Ψ is strongly convex Mθ,Mϑ are strongly convex
Ψ is C1 Mθ,Mϑ are C1

10 / 33



Convergence mechanism

▶ How do we get convergence in the learned version?

Classical Algorithm Classical Convergence

Learned Algorithm

Assumptions

Convergence?
?
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Convergence mechanism

▶ How do we get convergence in the learned version?
▶ A. Modify the classical MD convergence results to the

“approximate MD” case.

Classical Algorithm Classical Convergence

Learned Algorithm

Assumptions

Convergence

Approximation
Generalization
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LMD Convergence guarantees

Theorem (Informal)

Let f be relatively L-smooth with respect to the mirror map Ψ.
Suppose the approximation error

L⟨∇Ψ(xi)−∇Ψ(x̃i), x − x̃i⟩+ ⟨∇f (xi), x̃i − xi⟩ (1)

is uniformly bounded (above) by M. Approximate MD satisfies

min
1≤i≤k

f (x̃i)− f (x) = O(1/k) + M.

If f is also relatively µ-strongly convex with respect to Ψ,

min
1≤i≤k

f (x̃i)− f (x) = O
(

c−k
)
+ M.
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Training objective

LMD goals (1) and (2) for a class of functions F :
(1). Minimize objective functions f as quickly as possible;
(2). Enforce ∇M∗

ϑ ≈ (∇Mθ)
−1 by minimizing ∥∇M∗

ϑ ◦ ∇Mθ − I∥.
=⇒ Training objective:

x̃k+1 = ∇M∗
ϑ (∇Mθ(x̃k )− tk∇f (x̃k )) ;

L(θ, ϑ) =
∑
f∈F

E [f (x̃N)]︸ ︷︷ ︸
(1)

+EX [∥∇M∗
ϑ ◦ ∇Mθ − I∥]︸ ︷︷ ︸
(2)

.
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Example: Inpainting

▶ STL-10 dataset, 96 × 96 colour images
▶ Corrupted y using mask M with 20% missing pixels, 5%

Gaussian noise
▶ Inpaint using TV regularization:

min
x

f (x ; y) = ∥M ◦ (x − y)∥2
X + λ∥∇x∥1,X

▶ Function class3 to learn LMD on:

F = {f (x ; y) | corrupted images y}

3This is split into training and testing subsets.
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It’s fast

Figure: Much faster at small iterations

On unseen data (in test set).
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Sanity check

TV-based reconstructions. Left to right: masked image, learned MD
reconstruction, Adam based reconstruction.
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What is it doing?

▶ Seems to “invert” the gradient at edges - sharpening?

0.5

0.0

0.5

1.0

1.5

Figure: Pixel-wise ∇Ψ(y)/y (red channel)
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It can be faster

▶ Recent work: It turns out we can accelerate LMD and also
add stochasticity!

▶ Same pipeline: replace mirror maps in AMD with learned
versions

▶ Convergence theory: similar to that of AMD
▶ Convergence of accelerated LMD is to the minimum instead of

minimum plus constant
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Even faster

Figure: Reconstruction loss
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Extension to non-convex NN training

▶ General idea: permuting intermediate features does not affect
the final neural network (as a function) (invariance)

▶ Therefore, each individual element should be treated similarly
to others in the same layer

▶ Allows for a layer-wise parameterization

21 / 33



Equivariance of L2O

Proposition

Let (Z, ⟨·, ·⟩) be a Hilbert parameter space. Suppose that group G
acts on Z linearly, such that

1. The loss function L : Z → R is stable under G, that is,
L(g · z) = L(z) for any g ∈ G and z ∈ Z;

2. The laws p(z(0)) and p(g · z(0)) coincide for any g ∈ G.
Then starting from a G-equivariant optimizer, a learned optimizer
will continue to be G-equivariant.
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Example: Weighted ℓ2 potential

▶ Effectively give each element its own step-size (diagonal
preconditioning).

▶ LMD Problem: Train a 1-hidden-layer neural network to classify
2D moons data (faster)

5

10

15

20

25
A1
b1
A2

Componentwise weighting

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ¹⁰Output Layer ∈ ℝ¹

Figure: We observe that the LMD weights for the second layer matrix A2
are almost constant. We see 2 bands for first matrix layer A1 from the 2
input dimensions. 23 / 33



Initial experiments

Figure: Comparison of training a four-hidden-layer neural network with
SGD, Adam, and accelerated LMD for MNIST classification.

▶ LAMD is able to achieve very close performance to Adam (with
different generalization performance!)
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LMD: Summary

▶ MD: utilizing problem geometry → faster optimization
▶ LMD: data-driven geometry4

▶ Free equivariance for L2O!5

Outlook
▶ Interpretability
▶ Optimal mirror maps?
▶ Characterising “smallness” of a class of functions

4HYT, Mukherjee, Tang, Schönlieb. Data-driven mirror descent with
input-convex neural networks. SIMODS, 2023.

5HYT, Mukherjee, Tang, Schönlieb. Boosting data-driven mirror descent with
randomization, equivariance, and acceleration. TMLR, 2024.
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Definition of a derivative

Definition
A function f : U → R is differentiable at x ∈ U if there exists a linear
map A : Rd → R such that for every h,

lim
t→0

f (x + th)− f (x)− tA(h)
t

= 0.

We write A = Df (x) ∈ B(Rd ,R).
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Bregman divergence

Bh(y , x) = h(y)− h(x)− ⟨∇h(x), y − x⟩ (2)

for convex distance generating function h : X → R
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Assumptions for MD

▶ Standard choices for Ψ : Rn → R: strongly convex C1

▶ Convex conjugate Ψ∗(p) = supx∈Rd{⟨p, x⟩+ f (x)}
▶ ∇Ψ∗ = (∇Ψ)−1

▶ MD utilizes geometry of the problem
▶ Lower Lipschitz constant → larger allowed step-size → faster

convergence
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Example: simplex

Example
KL divergence on the simplex ∆ = {x ∈ Rd : x ≥ 0,

∑
i xi = 1}

min
x∈∆

KL(x∥y) =
d∑

i=1

xi log

(
xi

yi

)
Probabilistic distance: negative entropy

Ψ(x) =
∑

j

xj log xj if x ∈ ∆, +∞ otherwise

∇Ψ(x) = 1 + log(x),∇Ψ∗(y) =
exp(y)∑
j exp

(
yj
)
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Example: KL on simplex

Green: MD with entropy function. Red: Projected subgradient descent
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Example: least squares on simplex

Green: MD with entropy function. Red: Projected subgradient descent
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ICNNs

Proposition

The function Ψ is convex in y if all W (z)
i are non-negative, and all

functions gi are convex and non-decreasing.
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Convergence guarantees

Theorem (Formal)

Let f be relatively L-smooth and relatively µ-strongly-convex relative
to the mirror map Ψ, with L > 0, µ ≥ 0. Consider the iterations

xk+1 = argmin
x∈X

{⟨x ,∇f (x̃k )⟩+ LBΨ(x , x̃k )} , x̃k+1 ≈ xk+1. (3)

i.e. approximate MD with fixed step size 1/L. Let x ∈ X . Suppose

L⟨∇Ψ(xi)−∇Ψ(x̃i), x − x̃i⟩+ ⟨∇f (xi), x̃i − xi⟩ (4)

is uniformly bounded (above) by M. We have the following bound:

min
1≤i≤k

f (x̃i)− f (x) ≤ µBΨ(x , x̃0)

(1 + µ
L−µ)

k − 1
+M ≤ L − µ

k
BΨ(x , x̃0)+M. (5)
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