Data-Driven Geometry for Convex Optimisation

Hong Ye Tan
Joint work with: Carola-Bibiane Schönlieb, Subhadip Mukherjee, Junqi Tang, Andreas Hauptmann

Big Data Inverse Problems Workshop

Data-Driven Geometry for Gonvex Optimisation

Hong Ye Tan
Joint work with: Carola-Bibiane Schönlieb, Subhadip Mukherjee, Junqi Tang, Andreas Hauptmann

Big Data Inverse Problems Workshop

Motivation

- Convex optimisation problems occur naturally in fields concerned with data analysis
- Reconstruct x from noisy measurement y

$$
y=A x+\varepsilon \rightsquigarrow \hat{x}=\underset{x}{\arg \min }\|A x-y\|^{2}+g(x)
$$

- Do faster methods exist for specific classes of problems?
- This talk: Yes they do, we can learn them from data, and we can do so in a convergent manner.
- Learning to optimize: optimization as a task

What is a "specific class"?

- No mathematical definition, only qualitative
- Problems are "similar", e.g. forward operator, data type
- Examples: chest CT, natural image denoising
- Related: image manifold assumption

Background: learning to optimize

- Use neural network to parameterize update in terms of previous iterates
- Ad-hoc convergence guarantees
- Parameterize as combination of proximal steps
- Limited number of parameters
- This work: Convergent NN-based parameterization

[^0]
Background: Mirror Descent

Problem: Minimize convex function $f: \mathcal{X}=\mathbb{R}^{n} \rightarrow \mathbb{R}$

- Recall gradient descent with step-size η :

$$
x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Ψ is \mathcal{C}^{1} strongly convex, Ψ^{*} is the convex conjugate

Background: Mirror Descent

Problem: Minimize convex function $f: \mathcal{X}=\mathbb{R}^{n} \rightarrow \mathbb{R}$

- Recall gradient descent with step-size η :

$$
x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right)
$$

- Issue: terms on RHS are not in the same space

$$
x_{k+1}=\underbrace{x_{k}}_{\in \mathcal{X}}-\eta \underbrace{\nabla f\left(x_{k}\right)}_{\in \mathcal{X}^{*}} .
$$

Ψ is \mathcal{C}^{1} strongly convex, Ψ^{*} is the convex conjugate

Background: Mirror Descent

Problem: Minimize convex function $f: \mathcal{X}=\mathbb{R}^{n} \rightarrow \mathbb{R}$

- Recall gradient descent with step-size η :

$$
x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right)
$$

- Issue: terms on RHS are not in the same space

$$
x_{k+1}=\underbrace{x_{k}}_{\in \mathcal{X}}-\eta \underbrace{\nabla f\left(x_{k}\right)}_{\in \mathcal{X}^{*}} .
$$

- Solution: have a (bijective) mirror map $\nabla \Psi: \mathcal{X} \rightarrow \mathcal{X}^{*}$, with inverse $(\nabla \Psi)^{-1}=\nabla \Psi^{*}: \mathcal{X}^{*} \rightarrow \mathcal{X}$
Ψ is \mathcal{C}^{1} strongly convex, Ψ^{*} is the convex conjugate

Background: Mirror Descent

- This gives mirror descent (for strongly convex $\mathcal{C}^{1} \Psi$):

$$
\begin{equation*}
x_{k+1}=(\nabla \Psi)^{-1}\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right] \tag{MD}
\end{equation*}
$$

Figure: Schematic for MD^{2}

[^1]
Interpretations of MD

$$
\begin{equation*}
\left.x_{k+1}=(\nabla \Psi)^{-1}\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right]\right] \tag{MD}
\end{equation*}
$$

Interpretations of MD

$$
\begin{equation*}
\left.x_{k+1}=(\nabla \Psi)^{-1}\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right]\right] \tag{MD}
\end{equation*}
$$

1. Proximal method with non-Euclidean divergence

- GD: $x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{2 \eta}\left\|x-x_{k}\right\|_{2}^{2}\right]$
- MD: $x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{\eta} B_{\psi}\left(x, x_{k}\right)\right]$

Interpretations of MD

$$
\begin{equation*}
\left.x_{k+1}=(\nabla \Psi)^{-1}\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right]\right] \tag{MD}
\end{equation*}
$$

1. Proximal method with non-Euclidean divergence

$$
\begin{aligned}
& \text { - GD: } x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{2 \eta}\left\|x-x_{k}\right\|_{2}^{2}\right] \\
& \text { - MD: } x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{\eta} B_{\psi}\left(x, x_{k}\right)\right]
\end{aligned}
$$

2. Weirdly-discretized Riemannian/preconditioned gradient flow

$$
\begin{equation*}
\dot{x}=-\left(\nabla^{2} \Psi(x)\right)^{-1} \nabla f(x) \tag{RGF}
\end{equation*}
$$

Interpretations of MD

$$
\begin{equation*}
\left.x_{k+1}=(\nabla \Psi)^{-1}\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right]\right] \tag{MD}
\end{equation*}
$$

1. Proximal method with non-Euclidean divergence

$$
\begin{aligned}
& \text { - GD: } x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{2 \eta}\left\|x-x_{k}\right\|_{2}^{2}\right] \\
& \text { - MD: } x_{k+1}=\arg \min _{x}\left[\nabla f\left(x_{k}\right)^{\top} x+\frac{1}{\eta} B_{\psi}\left(x, x_{k}\right)\right]
\end{aligned}
$$

2. Weirdly-discretized Riemannian/preconditioned gradient flow

$$
\begin{equation*}
\dot{x}=-\left(\nabla^{2} \Psi(x)\right)^{-1} \nabla f(x) \tag{RGF}
\end{equation*}
$$

- Lower Lipschitz constant \rightarrow larger step-size \rightarrow faster convergence

Example: quadratic loss

- Optimizing $f(x)=3 x_{1}^{2}+x_{2}^{2}$. "Optimal" $\Psi(x)=9 x_{1}^{2}+x_{2}^{2}$.

Figure: Optimization paths for MD and GD from (1,1). MD does not bend, allowing for larger step-size.

Classical convergence

Theorem (Informal)

Suppose $f: \mathcal{X} \rightarrow \mathbb{R}$ is convex, has L-Lipschitz gradient, and attains its minimizer in \mathcal{X}. Then for suitable step-size and mirror map, mirror descent has convergence rate

$$
f\left(x_{k}\right)-f\left(x^{*}\right)=\mathcal{O}(1 / k)
$$

If additionally f is μ-strongly convex, mirror descent converges linearly:

$$
f\left(x_{k}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\left(1+\frac{\mu}{L-\mu}\right)^{-k}\right)
$$

Learning MD

MD: $x_{k+1}=\left(\nabla \Psi^{*}\right)\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right]$.

Learning MD

$$
\begin{aligned}
\text { MD: } x_{k+1} & =\left(\nabla \Psi^{*}\right)\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right] . \\
\text { LMD: } \tilde{x}_{k+1} & =\left(\nabla M_{\vartheta}^{*}\right)\left[\nabla M_{\theta}\left(\tilde{x}_{k}\right)-\eta \nabla f\left(\tilde{x}_{k}\right)\right] .
\end{aligned}
$$

- Goal: learn mirror maps $\nabla M_{\theta} \approx \nabla \Psi, \nabla M_{\vartheta}^{*} \approx \nabla \Psi^{*}$, where ψ is the "optimal" mirror map for a given function class \mathcal{F}.

Learning MD

$$
\begin{aligned}
\text { MD: } x_{k+1} & =\left(\nabla \Psi^{*}\right)\left[\nabla \Psi\left(x_{k}\right)-\eta \nabla f\left(x_{k}\right)\right] . \\
\text { LMD: } \tilde{x}_{k+1} & =\left(\nabla M_{\vartheta}^{*}\right)\left[\nabla M_{\theta}\left(\tilde{x}_{k}\right)-\eta \nabla f\left(\tilde{x}_{k}\right)\right] .
\end{aligned}
$$

- Goal: learn mirror maps $\nabla M_{\theta} \approx \nabla \Psi, \nabla M_{\vartheta}^{*} \approx \nabla \Psi^{*}$, where ψ is the "optimal" mirror map for a given function class \mathcal{F}.

Classical	Learned
$\nabla \Psi^{*}=(\nabla \Psi)^{-1}$	$\nabla M_{\vartheta}^{*} \approx\left(\nabla M_{\theta}\right)^{-1}$
Ψ is strongly convex	$M_{\theta}, M_{\vartheta}$ are strongly convex
Ψ is \mathcal{C}^{1}	$M_{\theta}, M_{\vartheta}$ are \mathcal{C}^{1}

Convergence mechanism

- How do we get convergence in the learned version?

Classical Algorithm $\xrightarrow[\text { Assumptions }]{ }$ Classical Convergence

Learned Algorithm $\xrightarrow{?}$ Convergence?

Convergence mechanism

- How do we get convergence in the learned version?
- A. Modify the classical MD convergence results to the "approximate MD" case.

Classical Algorithm
Classical Convergence

Convergence

LMD Convergence guarantees

Theorem (Informal)

Let f be relatively L-smooth with respect to the mirror map ψ. Suppose the approximation error

$$
\begin{equation*}
L\left\langle\nabla \Psi\left(x_{i}\right)-\nabla \Psi\left(\tilde{x}_{i}\right), x-\tilde{x}_{i}\right\rangle+\left\langle\nabla f\left(x_{i}\right), \tilde{x}_{i}-x_{i}\right\rangle \tag{1}
\end{equation*}
$$

is uniformly bounded (above) by M. Approximate MD satisfies

$$
\min _{1 \leq i \leq k} f\left(\tilde{x}_{i}\right)-f(x)=\mathcal{O}(1 / k)+M
$$

If f is also relatively μ-strongly convex with respect to ψ,

$$
\min _{1 \leq i \leq k} f\left(\tilde{x}_{i}\right)-f(x)=\mathcal{O}\left(c^{-k}\right)+M
$$

Training objective

LMD goals (1) and (2) for a class of functions \mathcal{F} :
(1). Minimize objective functions f as quickly as possible;
(2). Enforce $\nabla M_{\vartheta}^{*} \approx\left(\nabla M_{\theta}\right)^{-1}$ by minimizing $\left\|\nabla M_{\vartheta}^{*} \circ \nabla M_{\theta}-I\right\|$.
\Longrightarrow Training objective:

$$
\begin{gathered}
\tilde{x}_{k+1}=\nabla M_{\vartheta}^{*}\left(\nabla M_{\theta}\left(\tilde{x}_{k}\right)-t_{k} \nabla f\left(\tilde{x}_{k}\right)\right) ; \\
\mathcal{L}(\theta, \vartheta)=\sum_{f \in \mathcal{F}} \underbrace{\mathbb{E}\left[f\left(\tilde{x}_{N}\right)\right]}_{(1)}+\underbrace{\mathbb{E} x_{x}^{\left[\left\|\nabla M_{\vartheta}^{*} \circ \nabla M_{\theta}-I\right\|\right]} .}_{(2)} .
\end{gathered}
$$

Example: Inpainting

- STL-10 dataset, 96×96 colour images
- Corrupted y using mask M with 20% missing pixels, 5% Gaussian noise
- Inpaint using TV regularization:

$$
\min _{x} f(x ; y)=\|M \circ(x-y)\|_{\mathcal{X}}^{2}+\lambda\|\nabla x\|_{1, \mathcal{X}}
$$

- Function class ${ }^{3}$ to learn LMD on:

$$
\mathcal{F}=\{f(x ; y) \mid \text { corrupted images } y\}
$$

[^2]
It's fast

Reconstruction Loss

Figure: Much faster at small iterations
On unseen data (in test set).

Sanity check

TV-based reconstructions. Left to right: masked image, learned MD reconstruction, Adam based reconstruction.

What is it doing?

- Seems to "invert" the gradient at edges - sharpening?

Figure: Pixel-wise $\nabla \Psi(y) / y$ (red channel)

It can be faster

- Recent work: It turns out we can accelerate LMD and also add stochasticity!
- Same pipeline: replace mirror maps in AMD with learned versions
- Convergence theory: similar to that of AMD
- Convergence of accelerated LMD is to the minimum instead of minimum plus constant

Even faster

Reconstruction Loss

Figure: Reconstruction loss

Extension to non-convex NN training

- General idea: permuting intermediate features does not affect the final neural network (as a function) (invariance)
- Therefore, each individual element should be treated similarly to others in the same layer
- Allows for a layer-wise parameterization

Equivariance of L2O

Proposition

Let $(\mathcal{Z},\langle\cdot, \cdot\rangle)$ be a Hilbert parameter space. Suppose that group G acts on \mathcal{Z} linearly, such that

1. The loss function $L: \mathcal{Z} \rightarrow \mathbb{R}$ is stable under G, that is, $L(g \cdot z)=L(z)$ for any $g \in G$ and $z \in \mathcal{Z}$;
2. The laws $p\left(z^{(0)}\right)$ and $p\left(g \cdot z^{(0)}\right)$ coincide for any $g \in G$.

Then starting from a G-equivariant optimizer, a learned optimizer will continue to be G-equivariant.

Example: Weighted ℓ_{2} potential

- Effectively give each element its own step-size (diagonal preconditioning).
- LMD Problem: Train a 1-hidden-layer neural network to classify 2D moons data (faster)

Componentwise weighting

Figure: We observe that the LMD weights for the second layer matrix A_{2} are almost constant. We see 2 bands for first matrix layer A_{1} from the 2 input dimensions.

Initial experiments

Figure: Comparison of training a four-hidden-layer neural network with SGD, Adam, and accelerated LMD for MNIST classification.

- LAMD is able to achieve very close performance to Adam (with different generalization performance!)

LMD: Summary

- MD: utilizing problem geometry \rightarrow faster optimization
- LMD: data-driven geometry ${ }^{4}$
- Free equivariance for L2O! ${ }^{5}$

Outlook

- Interpretability
- Optimal mirror maps?
- Characterising "smallness" of a class of functions

[^3]
Definition of a derivative

Definition

A function $f: U \rightarrow \mathbb{R}$ is differentiable at $x \in U$ if there exists a linear $\operatorname{map} A: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every h,

$$
\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)-t A(h)}{t}=0
$$

We write $A=\operatorname{Df}(x) \in B\left(\mathbb{R}^{d}, \mathbb{R}\right)$.

Bregman divergence

$$
\begin{equation*}
B_{h}(y, x)=h(y)-h(x)-\langle\nabla h(x), y-x\rangle \tag{2}
\end{equation*}
$$

for convex distance generating function $h: \mathcal{X} \rightarrow \mathbb{R}$

Assumptions for MD

- Standard choices for $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$: strongly convex \mathcal{C}^{1}

Assumptions for MD

- Standard choices for $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$: strongly convex \mathcal{C}^{1}
- Convex conjugate $\Psi^{*}(p)=\sup _{x \in \mathbb{R}^{d}}\{\langle p, x\rangle+f(x)\}$
- $\nabla \Psi^{*}=(\nabla \Psi)^{-1}$
- MD utilizes geometry of the problem
- Lower Lipschitz constant \rightarrow larger allowed step-size \rightarrow faster convergence

Example: simplex

Example

KL divergence on the simplex $\Delta=\left\{x \in \mathbb{R}^{d}: x \geq 0, \sum_{i} x_{i}=1\right\}$

$$
\min _{x \in \Delta} K L(x \| y)=\sum_{i=1}^{d} x_{i} \log \left(\frac{x_{i}}{y_{i}}\right)
$$

Probabilistic distance: negative entropy

$$
\begin{aligned}
& \Psi(x)=\sum_{j} x_{j} \log x_{j} \text { if } x \in \Delta,+\infty \text { otherwise } \\
& \nabla \Psi(x)=1+\log (x), \nabla \Psi^{*}(y)=\frac{\exp (y)}{\sum_{j} \exp \left(y_{j}\right)}
\end{aligned}
$$

Example: KL on simplex

Green: MD with entropy function. Red: Projected subgradient descent

Example: least squares on simplex

Green: MD with entropy function. Red: Projected subgradient descent

ICNNs

Proposition

The function ψ is convex in y if all $W_{i}^{(z)}$ are non-negative, and all functions g_{i} are convex and non-decreasing.

Convergence guarantees

Theorem (Formal)

Let f be relatively L-smooth and relatively μ-strongly-convex relative to the mirror map Ψ, with $L>0, \mu \geq 0$. Consider the iterations

$$
\begin{equation*}
x_{k+1}=\underset{x \in X}{\arg \min }\left\{\left\langle x, \nabla f\left(\tilde{x}_{k}\right)\right\rangle+L B_{\Psi}\left(x, \tilde{x}_{k}\right)\right\}, \quad \tilde{x}_{k+1} \approx x_{k+1} \tag{3}
\end{equation*}
$$

i.e. approximate MD with fixed step size $1 /$ L. Let $x \in \mathcal{X}$. Suppose

$$
\begin{equation*}
L\left\langle\nabla \Psi\left(x_{i}\right)-\nabla \Psi\left(\tilde{x}_{i}\right), x-\tilde{x}_{i}\right\rangle+\left\langle\nabla f\left(x_{i}\right), \tilde{x}_{i}-x_{i}\right\rangle \tag{4}
\end{equation*}
$$

is uniformly bounded (above) by M. We have the following bound:

$$
\begin{equation*}
\min _{1 \leq i \leq k} f\left(\tilde{x}_{i}\right)-f(x) \leq \frac{\mu B_{\psi}\left(x, \tilde{x}_{0}\right)}{\left(1+\frac{\mu}{L-\mu}\right)^{k}-1}+M \leq \frac{L-\mu}{k} B_{\psi}\left(x, \tilde{x}_{0}\right)+M . \tag{5}
\end{equation*}
$$

[^0]: ${ }^{1}$ Banert et al., Data-driven nonsmooth optimization, SIAM Optimization, 2020

[^1]: ${ }^{2}$ Image: F. Orabona. Online Mirror Descent II: Regret And Mirror Version.

[^2]: ${ }^{3}$ This is split into training and testing subsets.

[^3]: ${ }^{4}$ HYT, Mukherjee, Tang, Schönlieb. Data-driven mirror descent with input-convex neural networks. SIMODS, 2023.
 ${ }^{5}$ HYT, Mukherjee, Tang, Schönlieb. Boosting data-driven mirror descent with randomization, equivariance, and acceleration. TMLR, 2024.

